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Executive summary

The recent breakthrough of data science and deep learning make a model independent 

approach for hedging possible. This hedging approach known as deep hedging is a 

robust data-driven method able to consider market frictions as well as trading 

constraints without using model-computed greeks. This article gives the main 

theoretical tools to understand the methodology and presents examples of 

applications in different frameworks (Black-Scholes, Heston and a back-test on real 

data). The results of those applications show that deep hedging works well with data 

generated by complex models and can provide a relevant hedging strategy taking into 

account market constraints.

1. Introduction

Over the last years, quantitative finance has become a 
privileged data science application field. The increasing 
computing power along with the fast-growing volumetry 
of data available has made it possible to apply time-
consuming and complex algorithms. Anomaly and fraud 
detections, predictive modelling for stocks and 
investment strategies, derivatives pricing are just a few 
examples of current applications.

Recently, banks set out to automate the hedging of 
financial derivatives. The objective is to replace classical 
hedging strategies that rely on the computation of risk 
sensitivities, known as greeks, by deep learning 
algorithms. 

The idea of this approach is to no longer depend on those 
greeks or even models themselves based on a priori 
assumptions (e.g. absence of transaction costs). This new
method known as deep hedging is theoretically entirely 
based on data and models hedging strategies with the use 
of neural networks. Training of the networks is performed 
with data input known as the training dataset. This 
dataset may contain classical market information such as 
prices of hedging instruments, bid-ask spreads or liquidity 
constraints, as well as other information like news 
analytics. The goal of the algorithm is to provide the best 
hedging strategy given the optimization of a risk metric 
such as the Value at Risk (VaR) or the Expected Shortfall 
(ES).

In this article, the theoretical tools are first presented (see 
references (1) and (2) for further details) in order to set a 
general framework of the deep hedging approach. 
Different applications and illustrations are then 
considered: Black-Scholes model without transaction 
costs, Heston model considering transaction costs, and a 
back-test approach on real market data. Finally, the pros 
and cons of deep hedging and the challenges ahead are 
discussed.
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2. Methodology
A. P&L modelling

Assume that 𝑑 hedging instruments (e.g. stocks but also 
vanilla options like call and put options, or even any other 
type of financial instrument) are available on the market. 
Those instruments are denoted by the stochastic process:

𝑆 ≔ 𝑆𝑡 𝑡≥0 ≔ 𝑆𝑡
1
, … , 𝑆𝑡

𝑑

𝑡≥0

The objective is to hedge against a given 
liability/contingent claim 𝑍 which is completely known at 
a given time 𝑇. To do so, the hedger sets discrete 
times 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 and looks for the best 
discrete stochastic process called hedging strategy and 
defined by:

𝛿 ≔ 𝛿𝑘 0≤𝑘≤𝑛−1 ≔ 𝛿𝑘
1
, … , 𝛿𝑘

𝑑

0≤𝑘≤𝑛−1

Where 𝛿𝑘 is chosen knowing all market information up to 

time 𝑡𝑘. 𝛿𝑘−1
𝑗

represents the number of hedging 

instruments 𝑆 𝑗 owned by the hedger between times 
𝑡𝑘−1 and 𝑡𝑘. Between those two times, owning those 
instruments makes the portfolio value vary by:

𝛿𝑘−1 ⋅ 𝑆𝑡𝑘 − 𝑆𝑡𝑘−1 ≔෍

𝑗=1

𝑑

𝛿𝑘
𝑗
× 𝑆𝑡𝑘

𝑗
− 𝑆𝑡𝑘−1

𝑗

In practice, buying and selling assets in financial markets 
implies transactions costs due to liquidity constraints such 
as bid-ask spreads. These costs must be considered by the 
trader to limit his losses. The time 𝑡𝑘 costs are denoted by  

𝑐𝑘 𝑆𝑡𝑘 , 𝛿𝑘 − 𝛿𝑘−1 . They may depend on instrument 

prices 𝑆𝑡𝑘 and the quantity of instruments bought at time 

𝑡𝑘, i.e. 𝛿𝑘 − 𝛿𝑘−1. A possible example of transaction costs 
is the proportional cost defined as follows:

𝑐𝑘 𝑆𝑡𝑘 , 𝛿𝑘 − 𝛿𝑘−1 ≔෍

𝑗=1

𝑑

𝑐𝑘
𝑗
× 𝛿𝑘

𝑗
− 𝛿𝑘−1

𝑗
× 𝑆𝑡𝑘

𝑗
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Thus, the self-financing condition (i.e. no additional cash is 
included to the portfolio) along with transaction costs and 
the contingent claim 𝑍 to hedge implies the following 
profit and loss (P&L):

𝛿 ⋅ 𝑆 𝑇 − 𝐶𝑇 𝛿 − 𝑍 ≔෍

𝑘=0

𝑛

𝛿𝑘−1 ⋅ 𝑆𝑡𝑘 − 𝑆𝑡𝑘−1 − 𝑐𝑘 𝑆𝑡𝑘 , 𝛿𝑘 − 𝛿𝑘−1 − 𝑍

𝛿−1 = 𝛿𝑛 = 0

One concrete illustration of this problem is to consider a 
vanilla call option of maturity 𝑇 and payoff 𝑍 =
𝑆𝑇 − 𝐾 +. In this case, there is only 𝑑 = 1 hedging 

instrument: the underlying itself 𝑆 = 𝑆 1 . A strategy 
commonly used by the trader is to calculate at each time 
step 𝑡𝑘 the Black-Scholes (BS) price of the option and the 
delta, that is the derivative of the BS price with respect to 
the underlying. This output constitutes the hedging 
strategy and is plugged into 𝛿𝑘. This allows the trader to 
mitigate his directional risk and limit his possible losses, 
which is the goal of hedging. 

B. Role of neural networks

As explained in the previous sub-section, the goal of 
hedging is to find the best strategy 𝛿 in order to 
minimise the P&L of a given portfolio. Practitioners use 
models like Black-Scholes to find 𝛿. At each rebalancing 
time 𝑡𝑘, they compute for each hedging instrument its 
corresponding greek, which is the derivative of the price 
of the contingent claim 𝑍 with respect to the 
instrument, and plug the result into 𝛿𝑘. This method 
allows to offset the risk factor(s) of the contingent claim 
associated to the hedging instrument(s).

Even if this approach is commonly used on trading desks, 
it has several limits:

• Transaction costs, liquidity constraints such as bid-ask 
spreads or more generally market frictions remain 
difficult to model correctly and are generally not 
considered.

• Greek computations do not take into account trading 
constraints (e.g. a limit on delta) and the adjustments 
that a trader has to make to comply with his desk 
limits

• In case of a complex model with an exotic contingent 
claim, the Greek computation can be either time-
consuming or inaccurate because based on Monte-
Carlo simulations

Those limits can be addressed by considering a model-
independent approach based on deep learning. More 
precisely, the hedging strategy 𝛿 consists of one or 
several neural network(s). This approach does not need 
greeks to choose an appropriate strategy and takes into 
account market frictions as well as trading constraints.

In addition, this data-driven approach does not need in 
theory a model to generate a relevant hedging strategy. 
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In this case, not only can input data consist of market 
indicators (e.g. prices of underlying assets, vanilla 
derivatives, volatility indicators, etc.) but also more 
qualitative information such as news analytics.

In the remainder of this article, for the sake of simplicity, 
input data, and in particular market data information, is 
only represented by instruments 𝑆. Similarly, trading 
restrictions can be added to the deep hedging algorithm 
but are not considered here.

Each 𝛿𝑘 is the output of a neural network able to capture 
market information up to time 𝑡𝑘. A neural network can 
be viewed as a parametrised function able to 
approximate any sensible function if the vector of 
parameter 𝜃 is large enough. Two types of neural 
networks are considered in this case study: 

• Feedforward neural networks: for each time step 𝑡𝑘,  

a neural network 𝛿𝑘 ≔ 𝐹 𝑆𝑡𝑘; 𝜃𝑘 is built with the 

instruments present value as inputs. In the case of a 
call option, the input is the underlying present value. 
The networks are mutually independent and the 
hedging strategy is only a function of the present and 
not of the past. The architecture is presented in the 
figure below: 

• Recurrent neural networks: This type of network is in 
theory more adapted to the deep hedging problem. 
Indeed, it consists of only one network such that the 

𝑘th output 𝛿𝑘 depends on the first 𝑘 inputs 
𝑆𝑡1 , 𝑆𝑡2 , … , 𝑆𝑡𝑘 . In this case, the hedging strategy takes 

into account both present and past information, 
which is more appropriate to consider for instance 
transaction costs or path-dependent instruments. The 
architecture is displayed in the figure below:

Where 𝐺 ⋅; 𝜃 is a neural network (of parameter 𝜃) 
with input the instruments 𝑆𝑡𝑘 at a given time 𝑡𝑘 plus

Figure 1: Overall architecture of the deep hedging 
strategy with 𝑛 feedforward neural networks

Figure 2: Overall architecture of the deep hedging 
strategy with one recurrent neural network
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a previous state ℎ summarising information up to 𝑡𝑘−1. In 
these two cases, the hedging strategy modelled as a 

neural network will be denoted by 𝛿𝜃.

C. Notion of risk measure and final 
formulation of the problem

As pointed out in the previous sub-sections, the goal of 
deep hedging is to minimise the losses of the P&L 

𝛿𝜃 ⋅ 𝑆
𝑇
− 𝐶𝑇 𝛿𝜃 − 𝑍 by choosing the best hedging 

strategy 𝛿𝜃 with neural networks.  The P&L is a random 

variable and not only a function of the strategy 𝛿𝜃. It 
therefore cannot be optimised directly. This optimisation 

can only be achieved in the light of the scalar 𝜌 ቂ

ቃ

𝑍 +

𝐶𝑇 𝛿𝜃 − 𝛿𝜃 ⋅ 𝑆
𝑇

that focuses only on losses and that 

satisfies some mathematical properties.

A function satisfying these properties is called a convex 
risk measure. A possible risk measure is the Expected 
Shortfall 𝐸𝑆𝛼 of confidence level 𝛼 and defined from the 
Value at Risk 𝑉𝑎𝑅𝛼 of confidence level 𝛼 according to the 
figure below:

Where 𝐿 = 𝑍 + 𝐶𝑇 𝛿 − 𝛿 ⋅ 𝑆 𝑇 refers to the reverse 
P&L and losses are counted positively. Even if trading 
desks rather privilege VaR over ES as a reference risk 
metric, ES is favoured in this context because VaR does 
not satisfy all the mathematical criteria of a convex risk 
measure and thus cannot be used to optimise the neural 
networks. From the ES definition, one can build an 
interesting convex risk measure called mixed expected 
shortfall and defined by:

𝜌𝛽 𝐿 ≔
1

1 + 𝛽
𝐸𝑆50% 𝐿 + 𝛽 × 𝐸𝑆99% 𝐿

This measure enables to account for two different types 
of losses : 𝐸𝑆50% 𝐿 represents overall losses while 
𝐸𝑆99% 𝐿 represents extreme losses. 𝛽 is a hyper-
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Figure 3: Graphical definition of VaR and ES with 
probability density and cumulative distribution 
functions of 𝐿

parameter chosen arbitrarily. The higher the 𝛽
parameter, the more the focus is on extreme losses 
as lim
𝛽→+∞

𝜌𝛽 𝐿 ≔ 𝐸𝑆99% 𝐿 . In this case study, tests 

showed that choosing 𝛽 = 1 allows to consider extreme 
losses.

Keeping the same notations as before, the final problem 
of P&L minimisation with neural networks can be
formulated as the following stochastic optimisation 
problem:

find 𝜃∗ ≔ argmin
𝜃

𝜌𝛽 𝑍 + 𝐶𝑇 𝛿𝜃 − 𝛿𝜃 ⋅ 𝑆
𝑇

= argmin
𝜃

min
𝑤1,𝑤2

1

1 + 𝛽

𝑤1 +
1

1 − 50%
𝔼 𝑍 + 𝐶𝑇 𝛿𝜃 − 𝛿𝜃 ⋅ 𝑆

𝑇
− 𝑤1

+

+𝛽 ×𝑤2 +
1

1 − 99%
𝔼 𝑍 + 𝐶𝑇 𝛿𝜃 − 𝛿𝜃 ⋅ 𝑆

𝑇
− 𝑤2

+

This optimisation problem can be solved by usual 
stochastic optimisation methods such as stochastic 
gradient descent or Adam.

3. Results under Black-Scholes 
Model

A. Model assumptions

In this case study, the deep hedging approach is first 
tested under the Black-Scholes model. This model is still 
an industry widespread model used by traders to hedge 
vanilla options. In this section, the goal is to hedge a short 
call option position (i.e. 𝑍 = 𝑆𝑇 − 𝐾 +) of maturity 30 
days with daily rebalancing where 𝑆𝑇 was simulated 
under the Black-Scholes framework:

𝑆𝑡 = 𝑆0𝑒
𝜎𝑊𝑡−

𝜎2

2
𝑡

Where 𝑆0 is the initial underlying price, 𝑊𝑡 is a Brownian 
motion and 𝜎 is the volatility parameter. To hedge against 
the risk of loss, only 𝑑 = 1 instrument is considered in the 
market: the underlying price 𝑆𝑡. In the results detailed 
below, no transaction cost is considered.

In theory, it is possible to perfectly replicate a short call 
option position with only the underlying and without 
considering transaction costs. This can be done by buying 
the quantity delta of the underlying, where delta is the 
derivative of the option price with respect to 𝑆𝑡. 

B. Numerical results

In this framework, only overall losses are considered (i.e.
𝛽 = 0) in the deep hedging algorithm. As the P&L 
histogram and its associated numerical results show in 
figure 4 and table 1, the deep hedging strategy with 
feedforward neural networks is close to the Black-Scholes 
strategy and produces similar results in terms of P&L 
distribution and risk metrics (VaR and ES).

Deep hedging: application of deep learning to hedge financial derivatives



The BS and deep hedging strategies 𝛿𝑘 as a function of 
the underlying price 𝑆𝑡𝑘 for each day 𝑡𝑘 are displayed in 

figure 5. The two strategies are very similar since the two  
curves match each other for each rebalancing day. The 
algorithm provides relevant results with this model.

4. Results under Heston 
Model

A. Model assumptions

The deep hedging approach was also tested in a more 
complex framework. The goal is still to hedge a short call 

option position (i.e. 𝑍 = 𝑆𝑇
1
− 𝐾

+
) of maturity 30 days 

with daily rebalancing, but here, 𝑆𝑇
1

is simulated under 
the Heston framework:

d𝑉𝑡 = 𝑎 𝑏 − 𝑉𝑡 d𝑡 + 𝜎 𝑉𝑡d𝑊𝑡
1

d𝑆𝑡
1
= 𝑉𝑡𝑆𝑡

1
𝜌d𝑊𝑡

1
+ 1 − 𝜌2d𝑊𝑡

2
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Where 𝑊𝑡
1

and 𝑊𝑡
2

are two independent Brownian 

motions, and 𝑉𝑡 and 𝑆𝑡
1

denote respectively the squared 
stochastic volatility and the underlying price. 𝜌 is the 
correlation parameter between underlying and volatility. 
𝑎 is the mean reversion speed of 𝑉𝑡, 𝑏 is the long term 
mean reversion level, and 𝜎 is the noise parameter. 

To hedge against the risk of loss, 𝑑 = 2 instruments are 
available:

• The underlying asset of price 𝑆𝑡
1

• A variance swap of maturity 𝑇 = 30 days and price 

𝑆𝑡
2
= 0׬

𝑡
𝑉𝑢d𝑢 +

1−𝑒−𝑎 𝑇−𝑡

𝑎
𝑉𝑡 − 𝑏 + 𝑏 𝑇 − 𝑡

In theory, it is possible to perfectly replicate a short call 
option position with only those two instruments and 
without considering transaction costs. Furthermore, 
unlike the BS case, it is assumed that transaction costs are 

proportional with 𝑐𝑘
𝑗
= 0,01.

B. Numerical results

To assess the efficiency of the deep hedging algorithm in 
the Heston framework, the reverse P&Ls (losses are 
counted positively) histograms of 4 strategies are 
compared:
• No hedge (red): no hedge has been performed i.e.

𝛿𝑘 = 0 at each time step
• Heston (green): 𝛿𝑘 is calculated according to the 

Heston model hedging strategy
• FFNN (orange): the 𝛿𝑘 are the outputs of independent 

feedforward neural networks as explained in section 3
• RNN (blue): 𝛿 is the output of one recurrent neural 

network as explained in section 3

The choice of 𝛽 = 0 (only overall losses are taken into 
account) produces the following results:

The choice of 𝛽 = 1, i.e. both overall and extreme losses 
are taken into account, gives the reverse P&L histogram 
in figure 7.

Hedging
strategy

50% 
VaR

50% 
ES

99% 
VaR

99% ES

Black-Scholes 2.28 2.56 3.25 3.50

deep hedging 2.27 2.57 3.34 3.65

Table 1 : Numerical results associated to figure 4

Figure 5: Comparison for each rebalancing day 
between the BS strategy in orange and the deep 
hedging strategy with feedforward neural networks in 
blue

Figure 6: Reverse P&L histograms of the Heston 
strategy in green, the deep hedging strategies with 
feedforward neural networks in orange and recurrent 
neural network in blue. The red histogram represents 
the no hedge case. In this case, 𝛽 = 0.

Figure 4: Reverse P&L histogram of the BS strategy in 
orange and the deep hedging strategy with 
feedforward neural networks in blue
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In this example, the dataset (for both training and testing) 
is composed of all the constituents of the CAC 40 index 
ranging from 1990 to 2020. Each sample path used is a 
normalised 31-days stock price process of one given stock 
such that the sample trajectories do not overlap. Similarly
to the previous numerical examples, the goal is to hedge 
against a short call option position of payoff 𝑍 =
𝑆𝑇 − 𝐾 +. 

The deep hedging algorithm (with FFNNs and RNNs) was 
performed with only 𝑑 = 1 hedging instrument, namely 
the stock itself. To limit losses as much as possible, 𝛽 ≔ 1
was chosen, and no transaction cost was considered. To 
have a relevant benchmark, a BS strategy was performed 
as well. BS volatility 𝜎 was estimated for each stock of the 
training dataset. Hence, the benchmark knows which 
stock is used for hedging, which is not the case for the 
deep hedging algorithm. 

As the results in figure 8 point out, the BS hedging 
method is significantly more efficient than the deep 
hedging ones both in terms of overall and extreme losses, 
even though it has the advantage to be specific to each 
stock.

This highlights two points:
• Contrary to the model approaches detailed in previous 

sections, the back-test on real data has much less
sample trajectories. The lack of data has then a 
negative impact on the hedging strategy efficiency

• The algorithm seems to lack robustness if the input 
information is not diverse enough.

The second issue can be fixed by adding more 
information. The first issue remains more complicated to 
solve and sets a paradigm problem : the only way to have 
a sufficient amount of data is to generate it with a model, 
which makes the deep hedging approach no longer 
model-independent.

The numerical results of the histograms can be found in 
Table 2.

These results show the crucial influence of 𝛽. They point 
out that the RNN framework performs better than the 
FFNN in this specific case. When 𝛽 = 0, even if overall 
losses are minimised by the two algorithms (the RNN
being better than the FFNN), almost no hedge is 
performed by the neural networks, and the hedging 
performance is so poor that extreme losses are of the 
same order of magnitude as the no hedge case. On the 
contrary, if 𝛽 = 1, the overall losses are again slightly 
larger but extreme losses are much smaller. Moreover, 
the two deep hedging strategies provide better results 
than the Heston strategy in all situations. Finally, and as 
expected, the RNN strategy is the best hedging strategy 
both in terms of overall losses and extreme losses and 
manages satisfactorily transaction costs.

5. Main limits of the deep 
hedging algorithm

Even if the previous numerical results show that the deep 
hedging algorithm has a huge potential, it has non-
negligible drawbacks. To illustrate that, a numerical 
example based on real data is given in this section. 
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Hedging
strategy

50% 
VaR

50% ES
99% 
VaR

99% ES

Heston 3.97 4.88 7.09 7.79

RNN (𝛽 = 0) 1.35 2.95 10.21 13.38

FFNN (𝛽 = 0) 1.38 3.04 9.72 12.25

RNN (𝛽 = 1) 3.26 3.67 4.53 4.93

FFNN (𝛽 = 1) 3.16 3.77 5.11 5.57

No Hedge 1.16 3.16 10.15 12.91

Table 2 : Numerical results associated to figures 6 and 7

Figure 8 : Reverse P&L histograms of the BS strategy in 
green, the deep hedging strategies with feedforward 
neural networks in orange and recurrent neural 
network in blue. In this case, 𝛽 = 1 and deep hedging 
strategies are trained with CAC40 stocks sample 
trajectories

Figure 7: Reverse P&L histograms of the Heston 
strategy in green, the deep hedging strategies with 
feedforward neural networks in orange and recurrent 
neural network in blue. The red histogram represents 
the no hedge case. In this case, 𝛽 = 1.

Deep hedging: application of deep learning to hedge financial derivatives



one is more complicated to solve. A possible way to get 
around that issue is to reproduce similar artificial data as 
the existing market data in terms of distribution. To do so, 
several methods are possible: GAN, ARCH, and ARMA-
GARCH or quantile regression. Still in the perspective of 
being completely model independent, quant practitioners 
such as Hans Buehler (see reference (3)) explained that 
pure data-driven approaches already exist in several 
banks for liquid derivatives books thanks to the data 
availability but not yet for illiquid products because of a 
lack of data.

The deep hedging approach for illiquid derivatives seems 
still relevant for hedging without considering greeks. Such 
products need a more complex model like a local or 
stochastic volatility model or the combination of the two. 
In this case, greeks computations are achieved by Monte-
Carlo simulation and can be time consuming. Deep 
hedging can return in a similar amount of time a more 
relevant hedging strategy considering both transaction 
costs and trading constraints.

References

1. Hans Buehler et al. “Deep Hedging”. arXiv: 
Computational Finance. 2018.

2. Michal Kozrya. “Deep Learning approach to Hedging”. 
University of Oxford. 2018. MA Thesis

3. Nazneen Sherif and Mauro Cesa. “Hans Buehler on 
deep hedging and the advantages of data-driven 
approaches”. Risk.net. 2019. 
URL:https://www.risk.net/derivatives/6705012/podc
ast-hans-buehler-on-deep-hedging-and-the-
advantages-of-data-driven-approaches

6. Conclusion

In this article, we presented a data-driven and model-
independent method with huge potential to hedge 
financial derivatives. This deep hedging approach is able 
to provide a relevant hedging strategy with three main 
inputs: the derivative to hedge, the hedging instruments, 
and the aversion against potential extreme losses, i.e. the 
choice of 𝛽 value. In addition, this algorithm is flexible 
since it can include any relevant input information such as 
transaction costs, trading constraints, market data
information or even qualitative information. The capacity 
of the algorithm to include these new elements is difficult 
to obtain from a model approach and allows to refine the 
hedging strategy.

The results obtained in the case of data simulated from 
existing models such as Black-Scholes or Heston are 
promising. Indeed, the hedging performance of the 
algorithm is either as good as the model-based strategy if 
there is no transaction costs, or better than these 
strategies in the presence of those costs. In the two 
models, the deep learning approach has not used greeks 
to obtain such results.

Nevertheless, a simple back-test on real data shows two 
important drawbacks of deep hedging: it needs a huge 
amount of data to be trained and tested correctly and is 
not robust when it does not have enough information. 
The different advantages and limits are summarised in 
table 3.

Although the second drawback can be easily fixed by
adding more input information to the algorithm, the first

Advantages Limits

• Greek independence: No need to compute Greeks 

especially for a complex model and a portfolio of exotic 

and illiquid derivatives

• Market constraints modelling: Ability to model market 

frictions such as transaction costs and trading 

constraints 

• Choice of risk aversion: Possibility to privilege overall 

losses over extreme losses and vice-versa

• Diversity of input information: Ability to consider 

almost as many risk factors as possible and in case of 

complete model independence, any possible 

quantitative or qualitative piece of information

• Model independent in theory: No need of pricing 

models 

• Lack of data: Need a huge amount of data to be 

trained correctly

• Lack of robustness: If not enough information is 

included, the deep hedging algorithm fails to provide a 

relevant hedging strategy

• Neural Network recalibration: Necessity of model 

recalibration in the case of a market shift regime  

• Compliance with regulatory constraints and 

Validation: Difficulty to explain the outputs of the 

deep hedging framework especially for complex 

derivatives
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Table 3: Main advantages and limits of deep hedging

Deep hedging: application of deep learning to hedge financial derivatives
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